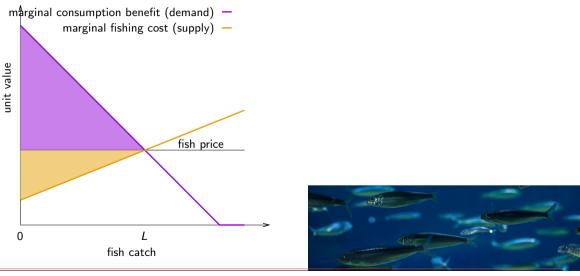
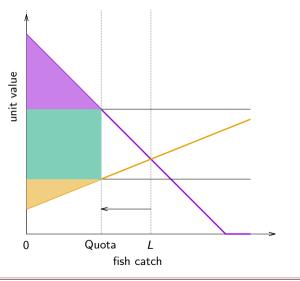

Improving the scientific basis for establishing sustainability in human-nature relationships

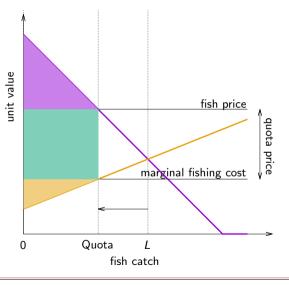
Martin F. Quaas


Symposium Biodiversitet of økonomi Syddansk Universitet, 21. august 2020

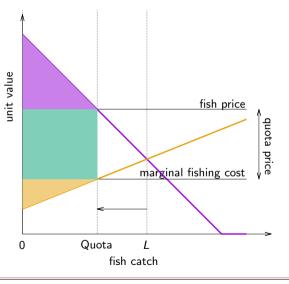
UNIVERSITAT Martin Quaas LEIPZIG Improving the scientific basis for establishing sustainability in human-nature relationships


IPBES global assessment: Direct drivers of biodiversity decline

UNIVERSITÄT LEIPZIG Díaz/Settele/Brondízio/Ngo et al. (2019, Science), Pervasive human-driven decline of life on Earth points to the need for transformative change


UNIVERSITÄT LEIPZIG

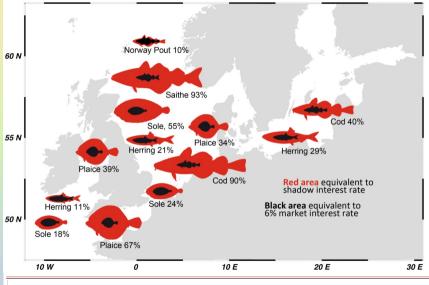
 Restricting resource use investment in natural capital


UNIVERSITÄT LEIPZIG

- Restricting resource use investment in natural capital
- Quota market price
 [^]/₌ marginal value of natural capital

UNIVERSITÄT LEIPZIG

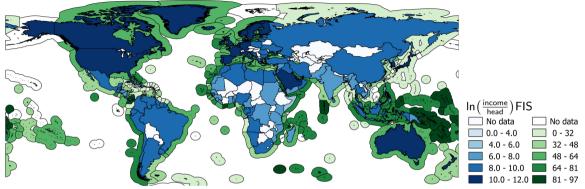
- Restricting resource use investment in natural capital
- Quota market price


 marginal value of natural capital
 value of living fish
- Values in the fishery

un

	marginal	value of
	fishing cost	living fish
regulated fishery	100%	0%
efficient fishery	40%	60%

Shadow interest rates in European fisheries



- 'Shadow interest rate': rate of return for reducing fishing quota
- European fish stocks are an extremely attractive investment opportunity

UNIVERSITÄT LEIPZIG

Quaas et al., Ecological Economics, 2012.

Per capita income and state of marine fish stocks (FIS)

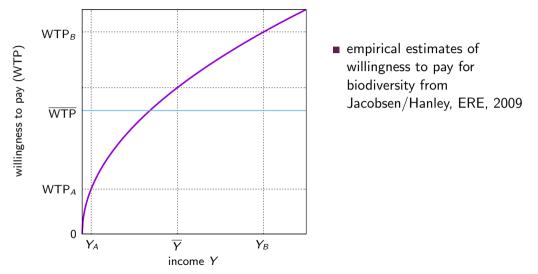
 $\label{eq:FIS} {\sf FIS} ~= - \underset{(0.16)}{-0.45}^{***} \text{number of neighboring countries} - \underset{(1.6)}{2.6} \ln \left(\frac{\text{income}}{\text{head}} \right) + \text{controls}$

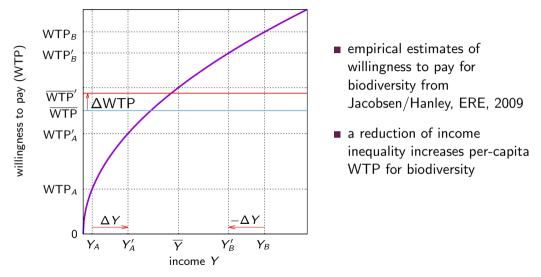
state of mariculture (MAR):

 $\mathsf{MAR} = -\underset{(0.19)}{0.19} \mathsf{number of neighboring countries} + \underset{(2.0)}{6.7}^{***} \mathsf{ln}\left(\tfrac{\mathsf{income}}{\mathsf{head}} \right) + \mathsf{controls}$

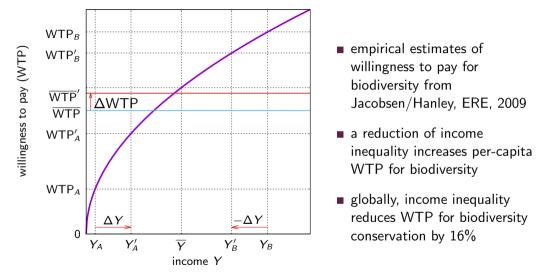
UNIVERSITAT Rickels/Dovern/Quaas. Beyond fisheries: Common-pool resource problems in oceanic resources and services. Global Envi-LEIPZIG ronmental Change 2016.

Markets and the economics of ecosystems and biodiversity


- Markets for private goods:
 - Market equilibrium: marginal production cost (supply) = marginal consumption benefit (demand)
 - Economic theory: Markets are efficient for private goods, i.e. goods which benefit only the customer
- Nature's goods and services benefit many
 - A fish population can sustain catches for many generations of fishers
 - A biodiverse forest provides recreational opportunities for many
- Economic theory: For natural goods and services, efficiency requires marginal cost of natural capital investment
 - = sum of marginal benefits for all who benefit


UNIVERSITÄT LEIPZIG

Economic inequality decreases the value of biodiversity

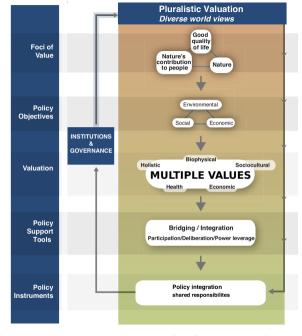

UNIVERSITAT LEIPZIG Baumgärtner/Drupp/Meya/Quaas. Income inequality and willingness to pay for public environmental goods. J Env Econ Management, 2017. Drupp/Meya/Baumgärtner/Quaas. Economic Inequality and the Value of Nature. Ecol Econ, 2018

Economic inequality decreases the value of biodiversity

UNIVERSITAT LEIPZIG Baumgärtner/Drupp/Meya/Quaas. Income inequality and willingness to pay for public environmental goods. J Env Econ Management, 2017. Drupp/Meya/Baumgärtner/Quaas. Economic Inequality and the Value of Nature. Ecol Econ, 2018

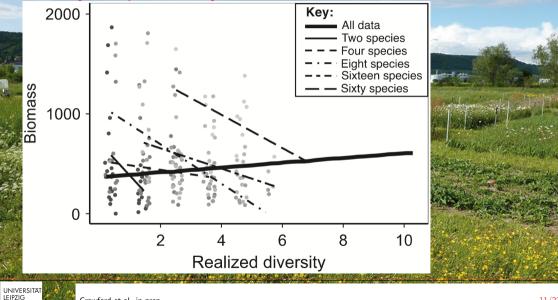
Economic inequality decreases the value of biodiversity

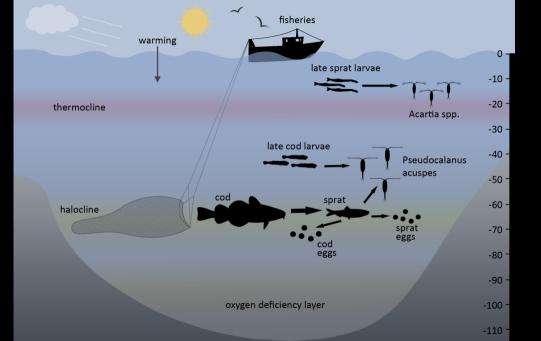
UNIVERSITÄT LEIPZIG Baumgärtner/Drupp/Meya/Quaas. Income inequality and willingness to pay for public environmental goods. J Env Econ Management, 2017. Drupp/Meya/Baumgärtner/Quaas. Economic Inequality and the Value of Nature. Ecol Econ, 2018


ScienceDirect

Valuing nature's contributions to people: the IPBES approach

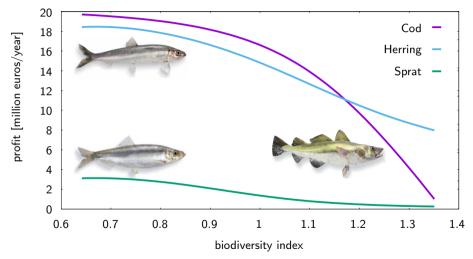
Unai Pascual^{1,2,3}, Patricia Balvanera⁴, Sandra Díaz^{5,6}, György Pataki⁷, Eva Roth⁸, Marie Stenseke⁹, Robert T Watson¹⁰, Esra Basak Dessane¹¹, Mine Islar¹², Eszter Kelemen^{13,14}, Virginie Maris¹⁵, Martin Quaas¹⁶, Suneetha M Subramanian¹⁷, Heidi Wittmer¹⁸, Asia Adlan¹⁹, SoEun Ahn²⁰, Yousef S Al-Hafedh²¹, Edward Amankwah²², Stanley T Asah²³, Pam Berry²⁴, Adem Bilgin²⁵, Sara J Breslow²⁶, Craig Bullock²⁷, Daniel Cáceres^{28,29}, Hamed Dalv-Hassen³⁰, Eugenio Figueroa³¹, Christopher D Golden³², Erik Gómez-Baggethun^{24,33,34}, David González-Jiménez^{4,35}, Joël Houdet³⁶, Hans Keune^{37,57}, Ritesh Kumar³⁸, Keping Ma³⁹, Peter H May⁴⁰, Aroha Mead⁴¹, Patrick O'Farrell⁴², Ram Pandit⁴³, Walter Pengue⁴⁴, Ramón Pichis-Madruga⁴⁵, Florin Popa⁴⁶, Susan Preston⁴⁷, Diego Pacheco-Balanza⁴⁸, Heli Saarikoski⁴⁹, Bernardo B Strassburg^{50,51,52}, Marjan van den Belt⁵³, Madhu Verma⁵⁴, Fern Wickson⁵⁵ and Nobovuki Yagi⁵⁶




adapted from Pascual et al (2017). Current Opinion in Environmental Sustainability

Biodiversity and productivity: Jena Experiment

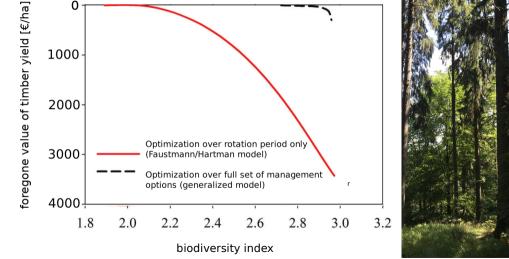
Biodiversity and productivity



Crawford et al. in prep

Biodiversity-profitability trade-off

optimal management of Baltic Sea fisheries



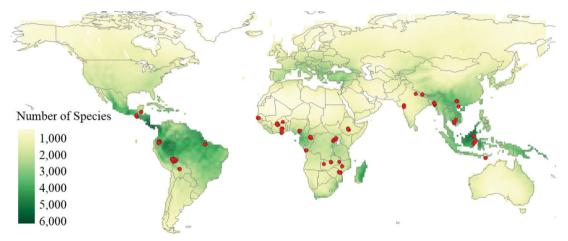
UNIVERSITÄT LEIPZIG

Bertram/Quaas. Biodiversity and Optimal Multi-species Ecosystem Management. ERE 2017.

Biodiversity-profitability trade-off

optimal management of Boreal forestry

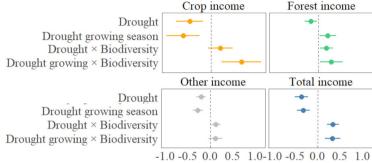
UNIVERSITÄT LEIPZIG


Tahvonen et al. Economics of mixed-species forestry with ecosystem services, Can J Forest Res, 2019.

Biodiversity as natural insurance against drought

Biodiversity as natural insurance against drought

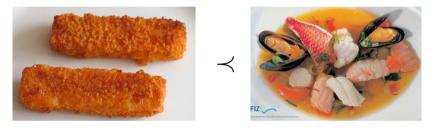
Panel data on 7,556 households in 23 countries



UNIVERSITÄT LEIPZIG

Noack/Di Falco/Riekhof. Droughts, Biodiversity, and Rural Incomes in the Tropics. JAERE 2019.

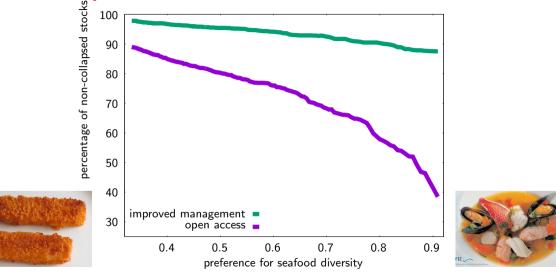
Biodiversity as natural insurance against drought


estimated marginal effect on log income

biodiversity mitigates adverse effect of drought on income

UNIVERSITÄT LEIPZIG

'Love of variety' on resource markets


• Marine biodiversity has an economic value, as consumers value seafood diversity

How does this 'love of variety' affect ocean fish diversity?

UNIVERSITÄT LEIPZIG Quaas/Requate. Sushi or Fish Fingers? Seafood Diversity, Collapsing Fish Stocks, and Multi-species Fishery Management. Scandinavian J. Economics 2013.

'Love of variety' on resource markets

UNIVERSITÄT LEIPZIG

Quaas/Requate. Sushi or Fish Fingers? Seafood Diversity, Collapsing Fish Stocks, and Multi-species Fishery Management. Scandinavian J. Economics 2013.

- Nature has multiple values for many, which need to be taken into account
 - Economic equality increases value of environmental public goods
- Investment in biodiversity conservation comes at a cost
 - Anticipated cost of conservation are often exaggerated
 - Optimal management can go a long way protecting biodiversity with small economic losses
- Conservation generates long-run economic benefits
 - Investment in natural capital generates high rates of return for fisheries
 - Biodiversity provides natural insurance
 - Preventing fish stocks from collapsing serves consumer 'love of variety' for seafood
- Integrated ecological-economic research can help
 - Valuing natural capital and costs of conservation
 - Assessing sustainability of resource use
 - Evaluating policy instruments

- Baumgärtner, S., M. A. Drupp, J. N. Meya, J. M. Munz, and M. F. Quaas (2017). Income inequality and willingness to pay for public environmental goods. Journal of Environmental Economics and Management, 85: 35–61.
- Bertram, C. and M. F. Quaas (2017). Biodiversity and Optimal Multi-species Ecosystem Management. Environmental and Resource Economics, 67: 321–350.
- Costello, C., D. Ovando, T. Clavelle, C. K. Strauss, R. Hilborn, M. C. Melnychuk, T. A. Branch, S. D. Gaines, C. S. Szuwalski, R. B. Cabral, D. N. Rader, and A. Leland (2016). Global fishery prospects under contrasting management regimes. *Proceedings of the National Academy of Sciences*, **113**(18): 5125–5129.
- Díaz, S., J. Settele, E. S. Brondízio, H. T. Ngo, J. Agard, A. Arneth, P. Balvanera, K. A. Brauman, S. H. M. Butchart, K. M. A. Chan, L. A. Garibaldi, K. Ichii, J. Liu, S. M. Subramanian, G. F. Midgley, P. Miloslavich, Z. Molnár, D. Obura, A. Pfaff, S. Polasky, A. Purvis, J. Razzaque, B. Reyers, R. R. Chowdhury, Y.-J. Shin, I. Visseren-Hamakers, K. J. Willis, and C. N. Zayas (2019). Pervasive human-driven decline of life on Earth points to the need for transformative change. Science, 366: eaax3100.
- Drupp, M. A., J. N. Meya, S. Baumgärtner, and M. F. Quaas (2018). Economic Inequality and the Value of Nature. Ecological Economics, 150: 340–345.
- Jacobsen, J. and N. Hanley (2009). Are there income effects on global willingness to pay for biodiversity conservation? Environmental and Resource Economics, 43(2): 137–160.
- Noack, F., M.-C. Riekhof, and S. Di Falco (2019). Droughts, Biodiversity, and Rural Incomes in the Tropics. Journal of the Association of Environmental and Resource Economists, 6(4): 823–852.
- Quaas, M. F., R. Froese, H. Herwartz, T. Requate, J. O. Schmidt, and R. Voss (2012). Fishing Industry Borrows from Natural Capital at High Shadow Interest Rates. *Ecological Economics*, 82: 45–52.
- Quaas, M. F. and T. Requate (2013). Sushi or Fish Fingers? Seafood Diversity, Collapsing Fish Stocks and Multi-species Fishery Management. Scandinavian Journal of Economics, 115(2): 381–422.
- Quaas, M. F., T. Requate, K. Ruckes, A. Skonhoft, N. Vestergaard, and R. Voss (2013). Incentives for Optimal Management of Age-Structured Fish Populations. *Resource and Energy Economics*, 35(2): 113–134.
- Quaas, M. F., M. T. Stoeven, B. Klauer, T. Petersen, and J. Schiller (2018). Windows of Opportunity for Sustainable Fisheries Management: The Case of Eastern Baltic Cod. Environmental and Resource Economics, 70(2): 323–341.
- Rickels, W., J. Dovern, and M. F. Quaas (2016). Beyond fisheries: Common-pool resource problems in oceanic resources and services. Global Environmental Change, 40: 37 49.
- Tahvonen, O., J. Rämö, and M. Mönkkönen (2019). Economics of mixed-species forestry with ecosystem services. Canadian Journal of Forest Research, 49(10): 1219–1232.
- World Bank (2016). The Sunken Billions Revisited: Progress and Challenges in Global Marine Fisheries.. The World Bank, Washington DC.

UNIVERSITAT